Resistance of Perforated Plates

\[
\zeta = \frac{\Delta p}{\rho \bar{w}_{1}^{1/2}} = \left[0.707 (1 - f)^{0.5} + 1 - f \right]^{2} f^{2}
\]

Resistance coefficients for thin-walled perforated sheet or grid of strips with sharp edged orifices (according to Fried & Idelchik).

Conditions:

Range of sheet length to hole diameter ratio, \(0 < \frac{l}{D_h} < 0.015\)

Reynolds number, \(\text{Re} > 10^5\)

Where:

\[
d_h = \frac{4f \sigma}{\Pi_o}
\]

\(f_{or}\) is the area of one orifice.

The resistance coefficient is given by:

<table>
<thead>
<tr>
<th>Open Area</th>
<th>Resistance Coefficient</th>
<th>Open Area</th>
<th>Resistance Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>28677.936</td>
<td>0.51</td>
<td>3.729</td>
</tr>
<tr>
<td>0.02</td>
<td>7055.112</td>
<td>0.52</td>
<td>3.478</td>
</tr>
<tr>
<td>0.03</td>
<td>3085.115</td>
<td>0.53</td>
<td>3.245</td>
</tr>
<tr>
<td>0.04</td>
<td>1707.168</td>
<td>0.54</td>
<td>3.027</td>
</tr>
<tr>
<td>0.05</td>
<td>1074.657</td>
<td>0.55</td>
<td>2.824</td>
</tr>
<tr>
<td>0.06</td>
<td>733.924</td>
<td>0.56</td>
<td>2.635</td>
</tr>
<tr>
<td>0.07</td>
<td>530.188</td>
<td>0.57</td>
<td>2.458</td>
</tr>
<tr>
<td>0.08</td>
<td>399.066</td>
<td>0.58</td>
<td>2.293</td>
</tr>
<tr>
<td>0.09</td>
<td>309.930</td>
<td>0.59</td>
<td>2.138</td>
</tr>
<tr>
<td>0.10</td>
<td>246.716</td>
<td>0.60</td>
<td>1.993</td>
</tr>
<tr>
<td>0.11</td>
<td>200.347</td>
<td>0.61</td>
<td>1.858</td>
</tr>
<tr>
<td>0.12</td>
<td>165.385</td>
<td>0.62</td>
<td>1.731</td>
</tr>
<tr>
<td>x</td>
<td>F(x)</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0.13</td>
<td>138.414</td>
<td>0.63</td>
<td>1.613</td>
</tr>
<tr>
<td>0.14</td>
<td>117.203</td>
<td>0.64</td>
<td>1.501</td>
</tr>
<tr>
<td>0.15</td>
<td>100.243</td>
<td>0.65</td>
<td>1.397</td>
</tr>
<tr>
<td>0.16</td>
<td>86.487</td>
<td>0.66</td>
<td>1.299</td>
</tr>
<tr>
<td>0.17</td>
<td>75.190</td>
<td>0.67</td>
<td>1.207</td>
</tr>
<tr>
<td>0.18</td>
<td>65.810</td>
<td>0.68</td>
<td>1.121</td>
</tr>
<tr>
<td>0.19</td>
<td>57.944</td>
<td>0.69</td>
<td>1.040</td>
</tr>
<tr>
<td>0.20</td>
<td>51.291</td>
<td>0.70</td>
<td>0.964</td>
</tr>
<tr>
<td>0.21</td>
<td>45.620</td>
<td>0.71</td>
<td>0.892</td>
</tr>
<tr>
<td>0.22</td>
<td>40.751</td>
<td>0.72</td>
<td>0.825</td>
</tr>
<tr>
<td>0.23</td>
<td>36.544</td>
<td>0.73</td>
<td>0.762</td>
</tr>
<tr>
<td>0.24</td>
<td>32.888</td>
<td>0.74</td>
<td>0.703</td>
</tr>
<tr>
<td>0.25</td>
<td>29.693</td>
<td>0.75</td>
<td>0.647</td>
</tr>
<tr>
<td>0.26</td>
<td>26.888</td>
<td>0.76</td>
<td>0.595</td>
</tr>
<tr>
<td>0.27</td>
<td>24.413</td>
<td>0.77</td>
<td>0.546</td>
</tr>
<tr>
<td>0.28</td>
<td>22.221</td>
<td>0.78</td>
<td>0.500</td>
</tr>
<tr>
<td>0.29</td>
<td>20.273</td>
<td>0.79</td>
<td>0.457</td>
</tr>
<tr>
<td>0.30</td>
<td>18.534</td>
<td>0.80</td>
<td>0.416</td>
</tr>
<tr>
<td>0.31</td>
<td>16.976</td>
<td>0.81</td>
<td>0.378</td>
</tr>
<tr>
<td>0.32</td>
<td>15.578</td>
<td>0.82</td>
<td>0.343</td>
</tr>
<tr>
<td>0.33</td>
<td>14.318</td>
<td>0.83</td>
<td>0.309</td>
</tr>
<tr>
<td>0.34</td>
<td>13.181</td>
<td>0.84</td>
<td>0.278</td>
</tr>
<tr>
<td>0.35</td>
<td>12.150</td>
<td>0.85</td>
<td>0.249</td>
</tr>
<tr>
<td>0.36</td>
<td>11.215</td>
<td>0.86</td>
<td>0.221</td>
</tr>
<tr>
<td>0.37</td>
<td>10.364</td>
<td>0.87</td>
<td>0.196</td>
</tr>
<tr>
<td>0.38</td>
<td>9.589</td>
<td>0.88</td>
<td>0.172</td>
</tr>
<tr>
<td>0.39</td>
<td>8.880</td>
<td>0.89</td>
<td>0.150</td>
</tr>
<tr>
<td>0.40</td>
<td>8.232</td>
<td>0.90</td>
<td>0.129</td>
</tr>
<tr>
<td>0.41</td>
<td>7.637</td>
<td>0.91</td>
<td>0.110</td>
</tr>
<tr>
<td>0.42</td>
<td>7.091</td>
<td>0.92</td>
<td>0.093</td>
</tr>
<tr>
<td>0.43</td>
<td>6.589</td>
<td>0.93</td>
<td>0.076</td>
</tr>
<tr>
<td>0.44</td>
<td>6.126</td>
<td>0.94</td>
<td>0.062</td>
</tr>
<tr>
<td>0.45</td>
<td>5.700</td>
<td>0.95</td>
<td>0.048</td>
</tr>
<tr>
<td>0.46</td>
<td>5.305</td>
<td>0.96</td>
<td>0.036</td>
</tr>
<tr>
<td>0.47</td>
<td>4.941</td>
<td>0.97</td>
<td>0.025</td>
</tr>
<tr>
<td>0.48</td>
<td>4.603</td>
<td>0.98</td>
<td>0.015</td>
</tr>
<tr>
<td>0.49</td>
<td>4.290</td>
<td>0.99</td>
<td>0.007</td>
</tr>
<tr>
<td>0.50</td>
<td>3.999</td>
<td>1.00</td>
<td>0.000</td>
</tr>
</tbody>
</table>

An enclosure vent is an example where these coefficients are applicable.